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Density has long been known to be an important measure of difficulty for ) anhattan rozting.
In this paper, *u-identify a second important measure of diffic lty, which 8M. Jtt. We show
that flux, like density, is a lower bound on channel width. in -. it ... .. r. a lnear-time
algorithm which routes any multipoint net Manhattan routing problem with density d and flux
f in a channel of width 2d + 0(f). (For 2-point nets, the bound is d + 0(f).) Thus we-show- '  A
that Manhattan routing is one of the NP-complete problems for which there is a provably good
approximation algorithm.

Since f _< Vrn for any n-net problem, the preceding bound indicates that every n-net problem
can be routed in a channel of width O(d + V/ui), thus proving a conjecture of Brown and Rivest.
For practical problems, however, the flux appears to be bounded by a small constant. In this cae,
the algorithm uses 2d + 0(l) tracks. (For 2-point nets, the bound is d + 0(l).) These bounds
are (asymptotically) nearly twice as good as those for the best known knock-knee algorithm and
nearly as good as those for the best known 3-layer algorithm, yet do not require the use of either
knock-knees or 3-layers of interconnect.

The results also have applications to a model of channel routing, which we call the $-parameter
nmode, that is closer to the design rules of current fabricatiod technologies. The 3-parameter

model is similar to the Manhattan model except that wires are assumed to be narrower than
contact cuts in the 3-parameter model (as is the case in most fabrication technologies). By
modifying the Manhattan routing algorithm, we show that every 3-parameter problem can be
routed in a channel of width 2d + 0(l). (For 2-point nets, the bound is d + 0(l).) Thus the
3-parameter model (like the knock-knees model) is a simple variation of Manhattan routing for
which every problem can be routed in 0(d) tracks.

Key Words: approximation algorithm, channel routing, density, flux, knock-knees, Manhattan
routing, multipoint net, 3-parameter model.
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)Channel roting plays a central role in the development or automated layout systems for
integrated circuits. One of the most common models for channel routing is known as Manhattan
routing. In Manhattan routing, the channel consists of a 2-Layer rectangular grid of columns and
tracks (rows). Terminals are located in the top layer of the top and bottom tracks at points where
the tracks intersect a column. A set of terminals to be connected is called a net. Nets containing
r terminals (r must always be larger than 1) are called r-point nets.

The object of the channel routing problem is to connect the terminals in each net with wires
in a way which minimizes the width of the channel. (The width of the channel is the number
of tracks used to route the wires. Wires may be routed in either layer of tracks between the
top and bottom track and in either layer of any column. (There is usually no restriction on the
number of columns at either end of the channel.) Wires may cross one another in different layers
but may not share corners (knock knees) or otherwise overlap. Contact cuts are used to connect
wire segments which are in different layers. Figure 1 illustrates these constraints. Notice that
the horizontal wire segments are routed in the bottom layer while the vertical wire segments awe
routed in the top layer. This kind of layer assignment is possible for all Manhattan routing.
and explains why Manhattan routing is often referred to as layer per direction and reserved layer
routing.

-4 . 2 -1

-'whlesoidv ~ gsIFigure 1: kErn pie of Manhattan routing. (Dashed lines denote wires in the bottom Ily er
t~ie slidlines denote wires in the top layer.)

An important measure of a channel routing problem's difficulty is its density. The density
ofa problem is the maximum number of nets that are split by any vertical cut of the channel.

A net is split by a cut of the channel if at least one terminal of the net lies on each side of the
cut. (This definition could differ by one from another common definition of density in which aZ
net is also said to be split if a terminal of the net lies on the cut.) For example, the cut shownV
in Figure 2 splits 10 nets. Inspection reveals that this problem has density 10. [1

It is not difficult to see that the density of a problem is a lower bound on its channel width. In

4,,Apractice, density is also dlose to an upper bound on channel width, since most practical problems
can be routed in channels of width d + 0(l). This is not true in general, however. For example,
Brown and Rivest 161 found examples of 2-point net problems with density 1 that require channels
of width 42-n where n is the number of nets in the problem. C odes
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a er a cut o f ch , flu m a t he nume r o n lt b c o .
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A tii column contains a trivial net.) For example, both of the cuts shown in Figure 3 split 15
nontrivial nets. The upper cut spans 18 nontrivial columns and 2 trivial columns while the lower
cut spans 15 nontrivial columns and I trivial column. Inspection reveals that this problem has
flux 3.
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IFigure 3: Two horizontal cutes, each of which splits fifteen nontrivial nets. Note that net 6
is not split by the upper cut. (Horirontal cuts measure fluz.)

Like density, flux also serves as a lower bound for channel width. In fact, we will apply the
techniques developed by Brown and Rivest in 161 to prove the following.

Theorem 1: The minimum channel width of any Manhattan routing problem with density d and
flux f i at kaut ma(d, f).

2
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In 123], Szymanski showed that Manhattan routing is NP-complete. Recently, this result
was strengthened with the aid of Yannakakis to show that Manhattan routing 2-point nets is
NP-complete 124). Thus it is not surprising that the many heuristics that have been proposed
for Manhattan routing [1, 2, 7, 9, 10, 11, 12, 17, 20, 22, 261 fail to produce optimal solutions for
some problems. In fact, none of these heuristics is known not to produce arbitrarily bad routings
for some problems.

In this paper, we combine an analysis of density and flux in order to find a linear-time
approximation algorithm for the Manhattan routing problem. Although the algorithm does not
perform as well as the heuristics for most practical problems, it is guaranteed to produce a routing
with width at most a constant times optimal for all problems. Hence, Manhattan routing is one
of the NP-complete problems for which there is a good approximation algorithm. In particular,
we will prove the following.

Theorem 2: The Manhattan routing algorithm described in this paper routes every problem with
density d and Jflu f in a channel of width 2d + 0(f). The running time of the algorithm is linear
in the area of the routing.

Theorem 3: The Manhattan routing algorithm described in this paper routes every 2-point net
problem with density d andfluz f in a channel of width d+O(f). The running time of this algorithmis linear in the area of the routing.

In the wont case, an n-net channel routing problem has flux e(./n). Thus Theorem 2 implies
that every problem can be routed in a channel of width 2d + O(V/n'), thereby proving a conjecture
made by Brown and Rivest for 2-point nets in [6].

For many problems, however, the flux is substantially smaller than O(V/'). For example, in
practical problems the flux appears to be bounded by a small constant. There are three reasons
for this. First, practical problems tend to have columns that contain less than two terminals.
Second, practical problems often have nets containing terminals that are dose together and on
the same side of the channel. (As was illustrated in Figure 3, these are precisely the conditions
which lead to a small flux.) Third, flux (unlike density) is a local phenomena and thus is less
likely to grow as n increases. As an example, Deutsch's 'difficult problem" (1 has 72 nets, 174
columns and density 19, but the flux is just 3.

Fortunately, the Manhattan routing algorithm described in this paper is particularly well
suited to problems with constant flux. In particular, the algorithm routes multipoint net problems
with constant flux in channels of width 2d + 0(1). By Theorem 3, this bound can be improved
to d + 0(1) for 2-point net problems with constant flux. The latter result is within a few (i.e.,
constant) tracks of optimal while the former result is within a few tracks of twice optimal. In
addition, those results are (asymptotically) nearly twice as good as those for the best known
algorithm in the 2-layer knock-knees model 1211, and are nearly as good as those for the best
known algorithm in the 3-layer knock-knees model (5, 19). (The knock-knees model is similar to
the Manhattan model except that wire segments are allowed to share comenrs in the knock-knw
model.) Thus the results help to explain why good routings can often be found for practical
problems without having to use knock-knees and/or 3 layers of interconnect.

The preceding results also have implications for routing in a more realistic model which we call

the $-parameter modeL The 3-parameter model is similar to the Manhattan model except that,
as in current fabrication technologies, wires are assumed to be narrower than contact cuts in the
3-parameter model. Hence the design rules specify three (instead of two) parameters: wire width,
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minimum size for contact cuts, and minimum separation between wires and/or contact cuts. By
modifying the Manhattan routing algorithm, we will prove the following result for 3-parameter
routing.

Theorem 4: For any values of the parameters in the S-parameter model, there is a constant c
such that any f-point net problem can be routed in a channel of width d + c, and any multipoint
aet problem can be routed in a channel of width 2d + c. As before, these results can be achieved in
linear time.

The remainder of the paper is divided into three sections. In Section 2, we describe the
Manhattan routing algorithm and prove Theorems 1-3. In Section 3, we describe the 3-parameter
model in greater detail and prove Theorem 4. We conclude with some remarks and open questions
in Section 4. The remarks are primarily concerned with the sise of the constant factors and with
the practicality of the rmults.

2. The Algorthm

In this section, we describe an algorithm for Manhattan routing. The algorithm is based on
the notions of fluz and density. The importance of these values is demonstrated in Section 2a,
where we prove the lower bound of Theorem 1. In Section 2b, we describe a simplified version
of the algorithm for routing top-to-bottom nets. (Top-to-bottom nets are nets with one terminal
in the top track and one terminal in the bottom track.) In Section 2c, we describe the general
algorithm and prove Theorems 2 and 3. The running time of the algorithm is discussed in Section
2d.

2a. Lowe Bounds

In what follows, we show that flux is a lower bound for channel width. Since density is
trivially a lower bound for channel width, we will have thus proved Theorem 1. Our method is
a straightforward application of the techniques developed by Brown and Rivest in 16].

Consider a horisontal cut of the channel which spans 2f2 nontrivial columns and splits at
least 2f 2 - f nontrivial nets. For each nontrivial net split by the cut, mark two terminals that
are on opposite sides of the cut and that are in different columns. Also mark the terminals in
trivial nets which are split by the cut. Let a denote the number of trivial nets split by the cut.
For example, an Figure 4.

.-.

Figure 4: Marked terminals in nets split by a horizontal cut. (Marked terminals are circled.)
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The marked terminals form a subproblem of the original problem with at least 212 - 1+ +s
2-point nets (s of which are trivial). At most f of the 212 + 8 columns spanned by the cut are
empty. By the arguments of 161, this means that at most f + 2 of the nontrivial nets can be
routed into the correct column by using the first track: f into empty columns and one out each
side of the cut. After the first track, there are at most f + 2 empty columns, the extra 2 having
possibly been created by wires exiting through the sides of the cut in the first track. Thus, at
most f + 4 nontrivial nets can be routed using the second track. In general, at most f + 2i
nontrivial nets can be routed using the ith track. Since at least 2f2 - f nontrivial nets must be
eventually routed, the minimum channel width w satisfies

wf + w(W + 1) > 2f2_

which means that w > f. Thus the original problem requires a channel of width at least f.

2b. Manhattan Routing of Top-to-Bottom Nets

The algorithm proceeds in four phases. A brief description of each phase is provided below.
This is followed by a more detailed description of Phase 3 (the heart of the algorithm). Figure 5
illustrates the portions of the channel used in each phase.

Phase 1: Route all trivial nets in the trivial fashion. Henceforth disregard these nets and
the columns that contain them. (In particular, do not include these columns and nets when
computing k below.) Find the least integer k for which there is a partition of the channel into
groups of k consecutive columns such that each group contains at least 3k columns which do
not have terminals in the top track and at least 3k columns which do not have terminals in the
bottom track. This can be accomplished by trying successive values (starting with 1, 2, 3, ... )
until a value for k is found that satisfies the constraint. By the definition of flux, we know that
6( -+ 1) is an upper bound for k and thus that k= 0().

Phase R,: Transform the problem into one that can be partitioned into blocks of k consecutive
columns such that each block contains at least 3 columns that do not have terminals in the top
track and at least 3 columns that do not have terminals in the bottom track. This can be done by
routing the first 3 terminals in each block of k columns into columns that do not have terminals in
the top track. For every k blocks of k columns, there are 3k columns that do not have terminals
in the top track (by Phase 1). Thus this process uses at most 3k tracks in the upper portion of
the channel and (by a symmetric argument) at most 3k tracks in the lower portion of the channel.
(Henceforth, the term block refers to a block of k columns produced in this phase.)

Phase 8: Use the middle d tracks of the channel to route wires between blocks. It is not
necessary to route wires into the correct column (that will be done in Phase 4); it is necessary
only that the wires be routed into the correct block. As the details of this phase are fairly
omplicated, they will be described later in the section.

Phi.. 4: Route the subproblems in the upper-middle and lower-middle portion of each block;
that is, route each et from the column assigned in Phase 3 to the column assigned in Phase 2.
Since each subproblem has at most k nets and at least one "empty" column, these routings can
be accomplished in a straightforward way (e.g., using the algorithm of Kawamoto and Kajitani
in 1ll1) using O(k) tracks. Specifically, the nets are routed one per track; the order of routing is

5



determined by constraints caused by a top terminal for one net lying above a bottom terminal
of another net. When a cycle of constraints occurs, one net of the involved cycle is temporarily
routed into the empty column to eliminate one constraint, and routed to its other terminal after

the other nets in the cycle have been routed. Two tracks are used to route the last net in each
such cycle of constraints.
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Figure 5: Illustration of the four phases of the dgorithm.

The interblock routing in Phase 3 is accomplished in a block-by-block fashion, moving from
left to right across the middle d tracks of the channel. Before any routing is done, the nets are
clasmified into three categories: faling nets (those for which the block containing the top terminal
is to the left of the block containing the bottom terminal), rising nets (those for which the block
containing the top terminal is to the right of the block containing the bottom terminal), and
vertical nets (those for which both terminals are in the same block). The routing procedure will
ensure that before and after each block is routed, the tracks containing the rising nets will be
above the empty tracks and the empty tracks will (in turn) be above the tracks containing falling
Sets.

The routing procedure will also insure that before and after each block is routed, the empty
tracks share enough empty columns in the previously routed portion of the channel so that
the pyramid structure shown In Figure ft can be safely inserted into the routed portion of the
channel. This fact will be used when the need for backtracking (pun intended) arises. As an
eample, Figure 6b illustrates bow the pyramid can be used to make connections in columns that
are "blocked" by a vertical segment of wire. Figure 6c illustrates how the pyramid structure is
then updated for the remaining empty tracks.

6
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with arrows), (b) routing of ending nets in Step 1, (c) routing of continuing nets
in Step 2, (d) column balancing in Step 3, (e) updating pyramid structure, ()
routing of starting falling nets in Step 4, (g) routing of remaining starting rising
nets in Step 4, and (h) completed routing of block and pyramid structure.
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2c. Manhattan Routing of Multipoint Noe

The algorithm for routing inultipoint nets is similar to that for routing top-to-bottom nets.
4 As before, the algorithm has four phases. Phase 2 is essentialy the same as before. Phase 4

eliminates multiple top terminals and multiple bottom terminals within blocks by connecting
them using 0(k) tracks, and connects one such terminal for each net to the position determined

by Phase 3. Phases 1 and 3 are somewhat different from before. We describe these differences in
what follows.

* Phase 1: As before, route the trivial nets and henceforth disregard the trivial nets and columns.
*Find the least integer k for which there is a partition of the channel into groups of k 2 consecutive

coun.uhta7tms. 2
-3knt r pi ytehrzntlcta h o fec ru

% cland uta at most k2 - 3k nets are split by the horizontal cut at the botto of each groupfoe

k = 0(f). Using 0(k) tracks at the top of the channel, connect the terminals in the top track

that are in the same net and same group for up to 3k nets. Do likewise at the bottom of the
channel. The resulting problem will have at least 3k columns that do not have wires at the top of
the channel and at least 3k columns that do not have wires at the bottom of the channel within
each group of V2 columns.

Phase S. The basic strategy is the same as before except that 2d tracks may be required for
the interblock routing. The details are described in what follows.

The nets are divided into four groups: failing nets (those for which the block containing the
.4 leftmost top terminal is to the left of the block containing the leftmost bottom terminal), rising

nets (those for which the block containing the leftmost top terminal is to the right of the block
containing the leftmost bottom terminal), vertical nets (those for which the leftmost top and
bottom terminals are in the same block), and same-side nets (those for which a of the terminals
are on the same side (top or bottom) of the channel). In addition, each net is divided into a rising
portion and a falling portion. The rising portion of a net links the block containing the leftmost
terminal to the blocks containing terminals in the top track of the channel. The failing portion
of a net links the block containing the leftmost terminal to the blocks containing terminals in the

* bottom track of the channel. (Note that some nets don't have both rising and falling portions.
For example, see Figure 8.) At most one connection will be made in each block for each portion
of a net. Where a portion of a net has more than one terminial in a block, additional connections
wre made in Phases 1 and/or 4, as described above.

22 2i .

Figure 8: (a) Division of rising nets into rising and falling portions, and (b) a falling net
with no rising portion.

10
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As before, the algorithm is designed to ensure that (between blocks) tracks containing rising
portions of nets are above empty tracks and that empty tracks are above tracks containing
failing portions of nets. In addition, the algorithm will ensure that the pyramid structure shown
in Figure 6 can be safely inserted in the empty tracks of the previously routed portion of the

* channel.

* Tb. routing proceeds block-by-block from left to right in the middle 2d tracks of the channel.
* Each block is routed in seven steps, as described below. The steps are numbered so as to coincide

with the algorithm described in Section 2b. A completed routing is shown in Figure 9.

* Step 1: Route the ending portions of nets in staircase patterns at the left end of the block.

Step S. Route the continuing portions of nets in staircase patterns nestled against those in
Step 1. The terminals (if any) for these portions of these nets are placed to the right of the
corresponding staircase, and connections are made to them in the straightforward way.

Step 1.5: Route the starting same-side nets in a staircase fashion.
* Step 8: If more columns have been used at the top of the channel than at the bottom, make up

the difference by routing the rising portions of some starting rising nets. (A symmetric procedure
is followed if the opposite is true.)

Step 4: Route the falling portions of starting falling nets and the remaining rising portions Of
starting rising nets, using the pyramid for backtracking.

* Step 4.5: Route the falling portions of starting rising nets and the rising portions of starting
falling nets in the straightforward way in empty tracks.

Step 5: Route the falling and rising portions of vertical nets in empty tracks.

Since each net is split into at most two portions, the preceding algorithm routes any problem
* in a channel of width 2d + 0(f), as claimed in Theorem 2. For problems with only same-side

nets and/or nets with one terminal on the opposite side and to the left of all other terminals,
the width can be improved to d + 0(f). (This is because such nets have a rising portion or a
falling portion, but not both.) Hence, afl 2-point net problems can be routed in a channel of

-. width d + 0(f), as claimed in Theorem 3.

* 2d. Running Time Anatlaysis

It is easily seen that Phases 1,2 and 4 require at most 0(tf) steps for t-terminal problems
with flux f. Since flux is a lower bound on channel width and t/2 is a lower bound on channel
length, these phases run in 0(A) time where A denotes the area of the routing.

Phase 3 is slightly more complicated since nonlinear time might, a priori, be required to update
and maintain the pyramid structure for backtracking. The pyramid, however, is used only as an
aid in understanding why the algorithm works; the algorithm itself has no need to use it at all.
For example, the phrase "by making use of the pyramid structure for backtracking" in Step 4
could be replaced by "by simultaneously backtracking in the uppermost and lowermost empty
tracks until both tiacks encounter an empty column." Upon some reflection, It can be seen that
the two commands result in equivalent routings. The latter command is simpler computationally,
however, and results in an easy proof that Phase 3 can be accomplished in 0(dt) = (A) steps.

11L
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i S. The 3-Paramer Mlodel

,: The 3-parameter model has parameters p ., p, and p. and the following design rules (see
Figre 10).

Rue 1: Wires have width p..
Rue I.F Contact cuts are rectangular, and each side has length at least pc.

Rule $: Two wires in the same layer, two contact cuts, or a wire and a contact cut must be
separated by distance at least p., unless they are electrically connected.

Rule 4: In order to be electrically connected, a contact cut and a wire must touch along aninterval of length at least p,. (The co.ntact cut does not need to be centered on the wire).
We assume that p, > p,, (as in current fabrication technologies), and that terminals are

spaced at multiples of pc + p. (as is implicitly assumed in the Manhattan model). Wires are either
horisontal or vertical, with a layer of interconnect devoted to each. Note that the Manhattan
model is equivalent to the 3-parameter model with the restriction p, > p, replaced by Pc = P..

In what follows, we show that for any values of the parameters, there is a constant c suchthat any 2-point net problem can be routed in a channel of width d + c, and any multipoint netproblem can be routed in a channel of width 2d + c, as claimed in Theorem 4. The key idea is to

4It
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Figure 10: Deign rules of the 3-prameter iodel,

~~,-s

place wires closer together than the spacing of the terminals where there is no need for adjacent
contact cuts, thus creating empty space that can accomodate extra wires.

Consider a block in the d-track routing produced by Phase 3 of the top-to-bottom net
algorithm described in Section 2b. Center all contact cuts on the wires they connect, and space
successive horizontal wires at a distance of Pc + p, (measured from the center of one wire to the
center of the next). In a group of wires (e.g., ending wires) where there are no adjacent contact
cuts, the vertical wires may be spaced at intervals of p. + (p, + p,)/2. Where two adjacent
contact cuts occur, an additional separation of (P, - p,,)/2 is needed. The latter situation occurs
only between successive staircases. Hence, the wires of successive staircases should be shifted
over an extra distance of (Pc - p.)12, as shown in Figure 11.

p-* I''w *

.4.

igure 11: Spacing between successive staircaes.
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If k is the number of columns in the block in the Manhattan routing, then there are at most

;7-2 k - 3 top terminals and k - 3 bottom terminals in the block, and the total amount of space

required in the 3-parameter routing is

[p, + (p, + p,)/2] + 3(p. - p,)/2.

If we choose k > 5 Z + 3, then

(k - 3)(p. + p,) > k [p. + (P. + p.)/21 + 3(pe - p-)l2

and there is enough space in the region occupied by k- 3 terminals to accommodate the modified

routing of Phase 3. Furthermore, there is enough space to simulate the permutation of Phase

4, requiring O(k) tracks. Finally, it can be shown that k - 3 additional tracks at the top and

bottom are sufficient to connect the (unevenly spaced) wires to the terminals. Thus the entire
routing requires d + c tracks where c = O(k).

A similar argument shows that multipoint nets can be routed in 2d+c tracks, thus completing

the proof of Theorem 4. In addition, the results show that the 3-parameter model gets around

the flux lower bound inherent in the Manhattan model, as well as the 2d - 1 lower bound for

2-point nets in the knock-knees model 114].

The preceding 3-parameter layout spaces adjacent horizontal wires at distances of Pc + p. as

in the Manhattan model. An obvious question is whether the horizontal tracks can be spaced

closer together to reduce the total channel width. In fact, for any i > 0 it is possible to modify
the preceding algorithm to require channel width at most

dip. + (Pe + p,)/2 + el + c

for some constant c. This is an asymptotic improvement over the density lower bound of d(p. +
Pc) + p, required by the Manhattan model. Similarly for multipoint nets and e > 0, it is possible
to modify the multipoint net algorithm to require channel width at most

2d*ps + (pc + .)/ + e] + c,

for some constant c.

It appears unlikely that these results can be improved to the point where the average horizontal
wire spacing is below p. + (Pc + p.,)/2, since that separation does not allow a contact cut to
appear between two wires. For the mne reason, however, it is to be expected that most optimal
routings will require channel width close to dip. + (Pc + p)/2], although instances occur that
require only the minimum separation of d(p. + p.) + Pe.

4. Remarks

The Manhattan routing channel width bounds discussed in this paper have the form ad + f
where a and 0 are constants. For 2-point nets, a = 1 in both the upper and lower bounds. For
multipoint nets, however, a = 1 in the lower bound and a = 2 in the upper bound. It is our
faling that (for both the upper and lower bounds) the ad term might be expressible as d + e
where e measures (in some sense) the number or concentration of conflicting nets (those which

shar terminals in several columns or blocks). Since most practical multipoint net problems can
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be routed in channels of width d-+ O(l), e should be defined so that (like f) it is usually conbtant
in practice. Should this turn out to be the case, it would improve our algor!t.hm by a factor of 2
(making it very close to the optimal solution for practical multipoint net problems). It would also
be interesting to know the value for e in the worst case. In particular, are there n-net problems
which require 2d tracks for every d and n?

Most of our efforts in this paper have been devoted to optimising the value of a since it is more
important than 0 for most problems. For problems with large flux and small density, however,
,0 is of primary importance. Although the upper and lower bounds calculated for P in this paper
are very crude, there are more sophisticated arguments which show (under a slightly different
definition of f and for a = 3) that V2 _5 P _5 V3 for top-to-bottom nets. For multipoint nets,
the bounds are somewhat worse and merit further study.

Although these results are not as good as those achieved by heuristics for most practical
problems, they might be useful as a worst-case backup to good heuristics (particularly in the
future as problems with larger and larger densities are encountered). In any case, they do provide
us with good worst-case theoretical bounds and with insight into why practical problems often
have good solutions.
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